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The two-singular manifold method: 11. Classical 
Boussinesq system 
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i Service de physique de 1'6tat condens6 Centre d'etudes de Saclay. F-91191 Gif-sur-Yvene 
Cedex, France 
4 Dienst Theoretische Natuurkunde, Vnje Universiteit Brussel, B-1050 Bmssels, Belgium 
5 Department of Mathematics, Heriot-Watt Univenity, Riccmon, Edinburgh EH14 4AS, UK 

Abstract. The two-singular manifold method-a generalization of the singular manifold 
method of Weiss-is applied to the classical Boussinesq system, also known as the Broer- 
Kaup system. From the point of view of ifs singularity analysis, the important feature of 
this system is the existence of two principal families with opposite principal parts. The 
usual sing* manifold method takes into account only one of these families at a time. Our 
generalization takes into account both families, and in this way we are able to derive the Lax 
pair and Darboux lransfoormatio?-and hence the auto-B.icklund transformation-forthe classical 
Boussinesq sysfem from ifs Painlev6 analysis. 

1. Introduction 

The classic,d Boussinesq, or Broer-Kaup, system [1-3] 

E I [ U ,  VI E Ut + (V + f U Z ) ,  e,O 

&'[U, VI = v, + (.'Uxx + uv), = 0 
is equivalent 121 to the scalar partial differential equation (PDE) 

(2) 1 2  4 2 1 E [ u ]  T U  uuxx - 2u:u, - JU~U,, - ju,u, - pft = 0 
where the potential U is related to U and V by 

U = ZU,, v = -2u, - 2 4 .  (3) 
The system (I), or equivalently the PDE (2), is well known as a completely integrable system; 
it has a Lax pair and a Darboux transformation [Z-51, Hirota bilinear form [6], and admits 
N-soliton solutions [3]. As expected, it was shown to pass the Painlevt test for PDEs [7] 
by Sachs [SI. Its auto-Backlund transformation [9], the existence of which is often taken 
as a definition of integrability [IO], follows by a simple elimination process [ll] between 
the Lax pair and the Darboux transformation. 

An important question for a given completely integrable equation is: can we derive its 
Bhklund transformation from Painlev6 analysis? More importantly, can we do so without 
employing any 'hicks'? If we do not know how to do this for equations whose Backlund 
transformation is known, then there is little prospect of being able to do so for a new 
equation suspected of being integrable, for example a PDE which passes the Painlev6 test. 

The classical Boussinesq system is an equation for which there is as yet no satisfactory 
derivati-on of the Backlund transformation from Painlevt analysis. It is in fact representative 
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of an important and large class of PDEs for which this is true. In the present paper we show 
how the Bicklund transformation of the classical Boussinesq system can be obtained from 
the truncation procedure in Painlevd analysis. 

We begin by discussing the usual truncation, i.e. the singular manifold method of 
Weiss [12]. This, however, only allows us to find a link with another equation, which shares 
with the classical Boussinesq equation (2) the property of containing Burgers equation as a 
factor [13]. We then consider the application of the two-singular manifold method developed 
by two of the present authors [14, U]. This two-singular manifold method allows us to 
recover at the same time the Lax pair and the Darboux transformation, exactly like the 
(one-)singular manifold method does for the Korteweg-de Vries (Kdv) equation. The auto- 
Backlund transformation for equation (2) follows by the usual elimination process 1111. We 
finish with some general conclusions on the truncation procedure in Painlev€ analysis. 

2. The (one-)singular manifold method 

Let us briefly recall the Painlev6 analysis of (2) [13]. We use the invariant formulation of 
this analysis [16], and so take as expansion variable x .  and also the x-primitive of x - l ,  
log Y [171 (for details see the appendix). The PDE (2) then has the two expansion families 

U =a logV + U 0  +U,X + .. . (4) 
with a any of the two square roots of the coefficient a2 of (2); each of these families 
has the indices (-1,0,3,4). All 
compatibility conditions are of course identically satisfied. These two families correspond 
to the invariance of (2) under (U, t )  + ( - U ,  -t), or equivalently the invariance of (1) under 

The corresponding singularity degree of E is 4. 

(U,  t )  + (-U, 4). 
The one-family truncated  expansion^ 

UT = a  log Y + U0 

c, + ($2 + ZaC, - u * q x  = 0 .  

(5) 

(6) 

exists provided that 

Such a constraint, a condition on the singular manifold (p - m), is usually referred to as a 
'singular manifold equation' (SME). 

c = w, 

The natural parametric representation of the conservation law (6) is 

(7) 1 2  a's = w f  + Iwx + 2awz, 
and the cross-derivative condition (A8) becomes 
a 2 w , + 2 a w , w , , , + 4 ~ w , , + 2 w ~ w , + 2 ( ~ , w ~ , + w u , w , , ) + ~ w , , , + w I ,  2 

(8) - = (a, + aa," + 2 w 4  (w, + W: + aw,,) = o 
analogous to the factorization [I31 of the classical Boussinesq equation (2) 

E [ U I  - - ~ ( a , - a a , " + z ~ , a , + 2 ~ , ) ( ~ , + ~ ~ + a u , , )  = o .  (9) 
The suggestion in 1151 of deriving the Darboux transformation of the two-family PDE (2) 
from the successive application of the one-singular manifold method to each family of (2) is 
of no practical help here, because the Darboux transformation of the PDE (a), which has two 
families w = a log Y, 3a log Y, is not easy to obtain by singularity analysis. Accordingly, 
we will apply the two-singular manifold method to (2) in exactly the same way as Weiss 
applied the one-singular manifold method to the KdV equation: this allowed him to recover 
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both the Darboux transformation and the Lax pair, and we will see that the same happens 
with the PDE (2). 

It is important to note that the truncation (5) gives a truncation for grad(uT) involving 
only non-positive powers of x; that is, the unncation for the original fields U and V 
involves only non-positive powers of x .  This is because the function Y is designed so that 
such leading-order behaviour can be identified exactly with the corresponding series in the 
original expansion function (singular manifold) 'p - 'po. In order to obtain the Lax pair for 
the classical Boussinesq equation we have to use a more general expansion function than 
x. since x contains information about only one singular manifold. 

3. The two-singular manifold method 

For the two-singular manifold method [I51 we take as expansion variable a function Y ,  the 
ratio of two functions Q1 and @2 defining two singular manifolds. This function Y then 
satisfies the most general Riccati system with undetermined coefficients: 

Y, = Ro f R I Y  f R2Y2 (10) 

r, =so+ s l y  f S z Y 2  

(Y& - ( Y A  = xo + X,Y + X2YZ = 0 

the cross-derivative condition of which is 

where 

X o  E Rest - So,x+ RlSo - RoSl = O ~  

More generally we take components ( Y I ,  Yz ,  . . .) satisfying a projective Riccati system. 

Y = @l/@2 onto the essentially two-component first-order linear system 
The system (lo), (11) can always be linearized by the canonical transformation 

but in general cannot be linearized onto a second-order scalar system, because this requires 
that either Ro or Rz never vanishes. The above matrix spectral problem has of course 
the same compatibility conditions (13), (14), and (15) as the Riccati system in Y.  For 
PDES having two principal families (in the sense of [IS]) with opposite principal parts, the 
associated Darboux transformation will then in general be of the form 

UT = log 11-1 - D log @2 f U (18) 

where D is the singular part operator [19] and UT, U are two different solutions of the 
PDE. The more general Riccati system (lo), (11) is therefore particularly well suited to 
the two-manifold situation. Further discussion of the two-manifold method can be found 
in [15]. 
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3.1. Application to the classical Boussinesq system 

The truncation (5) is replaced with 
UT =alogY + ug . (1% 

From the definition of grad(Y) we see immediately that the resulting truncation for grad(uT) 
extends from Y-’ to Y ,  and so those for U and V extend from Y-‘ to Y ,  and from Y-’ 
to Yz, respectively. The possibility of constructing such truncations of Painlev6 expansions 
involving both negative and positive powers was first remarked upon in [20]. It is this 
together with the variable Y ,  satisfying a more general Riccati system than x ,  that allows 
here the recovery of the Lax pair and the Darboux transformation for the classical Boussineq 
equation. 

Substitution of (19) into (2) gives an expansion in Y extending from Y-4 to Y4 
8 

E[q] I Y-4 EjY’ = 0 (20) 
j = O  

generating nine determining equations, together with the three cross-derivative conditions 
(13)-(15). Among these, EO and E8 & identically zero since in (19) the leading-order 
coefficient has already been chosen, and E,, Es-j for the Fuchs indices j = 3 . 4  are 
differential consequences of ( E l .  Ez) ,  (E,.  E6) respectively. This then leaves us with four 
determining equations, 

so 2aR1 - 2- - 1 2 ~ 0 , ~  ) 2 - 3 a 2 ~  R2 
Ro R,2 

3 E6 s2 

aR; - R2 
- = a  (2aRI  - 2- - 12u0,x 
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where t-derivatives of RO and R2 have been eliminated using the cross-derivative conditions 
(13) and (15). 

Assuming RoR2 # 0, these four equations are equivalent, modulo the cross-derivative 
conditions (13H15), to 

so - = - 2 ~ 0 , ~  - a((log R O ) ~  + R I )  
Ro 

s2 

R2 

(25) 

(26) 2 ~ 0 , ~  + a((log R d x  - RI  1 _ = _  

This introduces the spectral parameter as an arbitrary constant of integration and leads 

(2% 

(30) 

to the solution for R I ,  So, S I ,  and S, 
RI  = h - a-luo.x 

SO = -ahRo - ~ R O , ~  - R ~ u o . ~  

(31) SI =-ah 2 -2aR0R2-a-~uo,~.  

SZ = -ahR2 + aR2,, - R Z U O , ~  (32) 
with the two remaining nonidentically zero cross-derivative conditions 

(34) 

Elimination of RO or R2 leads to the conditions 

(35) 
3 

E [ u o - ~ l o g R 2 ] = 0  X z ~ - E [ u o + ~ l o g R o ] = O  
3 xo 

expressing that a second solution U to the classical Boussinesq system has been obtained. 
Since Ro and RZ are exchanged under the permutation of (q1, h), this provides for the 
Riccati pseudopotential y = R2Y 

~ ~ = r o + r i y + r z y ~  (36) 

- 
2a2Rz 2a2Ro 

Yt=so+stY+s2y2 (37) 

(38) ro = -(-ut - U: + anxx) 

the unique solution 
1 

2 a 2  

1 
a 

r l = h - - u ,  

rz = 1 
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s2=-ah-uv, 

with the conservative form for the second equation (37) 
(43) 

The transformation y = + I / &  gives a matrix Lax pair (16), (17), with R; = ri and 
Sj = si. The buncation UT gives the corresponding Darboux transformation 

UT = a  log Y + ug =alog  y + u = a log+, - alog+z + u (45) 
which is exactly of the form (18). 

The two-singular manifold method thus gives both the Lax pair and the Darboux 
transformation in the case of the Broer-Kaup system. This situation is identical to that 
of the (one-)singular manifold method of Weiss when applied to the Korteweg and de Vries 
equation [7,15]: the Darboux transformation is not known before the truncation procedure 
and is a result of the method. Thus, in some sense. the Broer-Kaup system is as elementary 
among the two-family equations as the KdV equation is among the one-family ones. 

Elimination [ll] of y between the Riccati pseudopotential (36), (37) and the Darboux 
transformation (45) gives the auto-Backlund transformation for the classical Boussinesq 
system [91 

(46) 
1 

2a (aI + U: - av,,) - = ah - + e(u-u)/a - -e(u-u)/a 

(ah + u d  2 2  2 (U - U), = -a A + vx - au,, - ae(u-u)'a 

1 
2a (47) +-e(v-wo ( a ~+v ,+aa , ) (u ,+u: -av , , )  

where we have written U for UT. (For this particular example, y can be easily eliminated 
since the singular part operator D is invertible: y = e('-")/'.) 

The Riccati system (36), (37) can also be linearized (because r2 is a never-vanishing 
constant) onto a scalar Lax pair by 

(48) 
% 

Y = - -  
11 

1 -  
q x x =  A--U qx--(V+aOx)q ( :a-) 4a2 

- -  
the spatial part of which is linear in A and the physical fields U, V linked to U by 

U = zu, v = -2u* - 2v;. (51) 
In (50) the arbitrary gauge coming from the integration with respect to n in (44) has been 
set equal to the constant ah2 12. The cross-derivative condition of the pair (49). (50) then 
reads 

( 7 4  - ( ~ l ~ ) ~ ~  = -z;;EI[U,  VIv, - 

- - 

- -  - -  1 - -  1 
[&[U, VI + a (&[U, VI),) q = 0 (52) 
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- _  

and so is satisfied iff U ,  V satisfy the cl&sical Boussinesq system (1). 

the spatial part (49). one obtains 
If one linearizes the Riccati system (36), (37) so as to cancel the coefficient of qx in 

+I 1 - y=--+-(U-2ah)  + 4a 
1 

zs - 7 [(a- %A)* - 4v7 $ ' - 16a 

(53) 

(54) 

qrt = - f (U + 2ah) *x + pz'. (55) 
This is the Lax pair for the classical Boussinesq equation given by Kaup [2]; the nonlinearity 
in A and U of the spatial part (54) of this Lax pair is due to the shift incorporated in (53) 
which removes terms in qX from (54). 

3.2. Remarks 

There has recently been another attempt 1211 to obtain the Lax pair for the classical 
Boussinesq equation from its PainlevC analysis. Using arguments based on the Hirota 
bilinear form of the classical Boussinesq equation [6], a solution was sought depending 
explicitly on two singular manifolds. However, these authors were not able to obtain the 
Lax pair with a spectral parameter A-the latter had to be introduced afterwards using 
the Galilean invariance of the classical Boussinesq system. Moreover, the manipulation of 
expansions involving two (or more) singular manifolds is complicated, and was not handled 
systematically in [211. 

We stress therefore the following advantages of the approach adopted herein: 
We use a single expansion variable Y. 
After substitution of the appropriate expansion, coefficients of each power of Y are set 
to zero independently. 
The spectral parameter h is introduced by the process of solving the determining 
equations for the coefficients of the appropriate (projective) Riccati system. 
The singularity shucture dictates the required linearization of the Riccati system. 

These points are of course equally applicable to both the singular manifold method of 
Weiss [12,22] and to the two-singular manifold method used here. 

Finally, we remark that the idea of introducing two entire functions, originally due 
to PainlevC [23] for ordinary differential equations, was first introduced for PDEs by 
Hirota [24,25]. The bilinear and trilinear approaches for the classical Boussinesq system, 
and its occurence as a reduction of first modified KP, are discussed in [26-291. 

4. Conclusions 

We have applied the two-singular manifold method to the classical Boussinesq equation to 
derive its Lax pair and Darboux transformation from Painlev6 analysis. The autoBacklund 
transformation then follows immediately, by elimination of the variable y between the two 
Riccati pseudopotential equations and the Darboux transformation. 
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Appendix. The invariant analysis 

The invariant analysis [16] uses as expansion variable a function x given in terms of the 
singular manifold p - $YO by 

and also the x-primitive of x-’, log Y [17], where 

Y = ($7 - po)(o;4;”2. 

These functions have gradients given by  

The cross-derivative condition on grad(x) is identical to that on grad(1og Y); 

s,+c,,,+2c,s+cs,=o (A8) 
and is identically satisfied in terms of p. 

This invariant analysis builds in a re-summation of the original WTC Painlev6 expansion, 
and has the effect of greatly shortening the expressions for the coefficients’of the expansion. 
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