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The two-singular manifold method: XI. Classical
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Abstract. The two-singular manifold method—a generalization of the singular manifold
method of Weiss—is applied to the classical Boussinesq system, also known as the Broer—
Kaup system. From the point of view of its singularity analysis, the important feature of
this system is the existence of two principal families with opposite principal parts. The
vsval singular manifold method takes into account only one of these families at a time, Qur
generalization takes into account both families, and in this way we are able to derive the Lax
pair and Darboux transformation—and hence the auto-Bécklund transformation—for the classical
Boussinesq system from its Painlevé analysis.

1. Introduction

The classical Boussinesq, or Broer-Kaup, system [1-3]

EU,VI=U+(V+43U%) =0 W
EU, V1=V, + (@®Use + UV), =0

is equivalent [2] to the scalar partial differential equation (PDE}
Elu] = %azu_mu —2u§un - %uxux, - %u,uxx - %un =0 (2)

where the potential u is related to U and V by
U=2u,, V==2u-2u (3)

The system (1), or equivalently the PDE (2}, is well known as a completely integrable system;
it has a Lax pair and a Darboux transformation [2-5], Hirota bilinear form [6], and admits
N-soliton solutions [3]. As expected, it was shown to pass the Painlevé test for pDEs [7]
by Sachs [8]. Its auto-Bécklund transformation [9], the existence of which is often taken
as a definition of integrability [10], follows by a simple elimination process [11] between
the Lax pair and the Darboux transformation.

An important question for a given completely integrable equation is: can we derive its
Bicklund transformation from Painlevé analysis? More importantly, can we do so without
employing any ‘tricks’? If we do not know how to do this for equations whose Bécklund
transformation is known, then there is little prospect of being able to do so for a new
equation suspected of being integrable, for example a PDE which passes the Painlevé test.

The classical Boussinesq system is an equation for which there is as yet no satisfactory
derivation of the Bécklund transformation from Painlevé analysis. It is in fact representative
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of an important and large class of PDEs for which this is true. In the present paper we show
how the Bécklund transformation of the classical Boussinesq system can be obtained from
the truncation procedure in Painlevé analysis.

We begin by discussing the usual truncation, i.e. the singular manifold method of
Weiss [[2]. This, however, only allows us to find a link with another equation, which shares
with the classical Boussinesq equation (2) the property of containing Burgers equation as a
factor [13]. We then consider the application of the two-singular manifold method developed
by two of the present authors [14, 15]. This two-singular manifold method allows us to
recover at the same time the Lax pair and the Darboux transformation, exactly like the
{one-)singular manifold method does for the Korteweg—de Vries (KdV) equation. The auto-
Bicklund transformation for equation (2) follows by the usual elimination process [11]. We
finish with some general conclusions on the truncation procedure in Painlevé analysis,

2. The (one-)singular manifold method

Let us briefly recall the Painlevé analysis of (2) [13]. We use the invariant formulation of
this analysis [16], and so take as expansion variable ¥, and also the x-primitive of x~7,

log ¥ [17] (for details see the appendix). The PDE (2) then has the two expansion families
u=alog¥ +upd-umy+--- (4)

with ¢ any of the two square roots of the coefficient @ of (2); each of these families:
has the indices (—1,0,3,4). The comesponding singularity degree of E is 4. All
compatibility conditions are of course identically satisfied. These two families correspond
to the invariance of (2) under (u, #) — (—u, —t), or equivalently the invariance of (1) under
U, 1) > (U, —t).

The one-family truncated expansion’

ur = alog¥ + up )]
exists provided that
C, + (3C*+2aC, —a®S)_=0. (6)

Such a constraint, a condition on the singular manifold (¢ — ¢p), is usually referred to as a
‘singular manifold equation’ (SME).
The natural parametric representation of the conservation law (6) is

C=w, a8 = w, + Jw? + 2aw,, (7
and the cross-derivative condition (A8) becomes

azwxxxx + 2aw, Wy, + 4aw§x + zwiwxx F2(We Wy + Witye) + 28 Wex + Wy

= (8, -+ a&f - 2w_u) (w, + w_f + awn) =10 (8)
analogous to the factorization [13] of the classical Boussinesq equation (2)
Elu] = -1 (8, — ad? + 2u.8; + 2ux) (e + 2 + auz:) =0. 9)

The suggestion in [15] of deriving the Darboux transformation of the two-family PDE (2)
from the successive application of the one-singular manifold method to each family of (2) is
of no practical help here, because the Darboux transformation of the PDE (8), which has two
families w = alog ¥, 3alog¥, is not easy to obtain by singularity analysis. Accordingly,
we will apply the two-singular manifold method to (2) in exactly the same way as Weiss
applied the one-singular manifold method to the KdV equation: this allowed him to recover
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both the Darboux transformation and the Lax pair, and we will see that the same happens
with the PDE (2).

It is important to note that the truncation (5) gives a truncation for grad(u«t) involving
only non-positive powers of x; that is, the truncation for the original fields UV and V
involves only non-positive powers of x. This is because the function ¥ is designed so that
such Jeading-order behaviour can be identified exactly with the corresponding series in the
original expansion function (singular manifold) ¢ — ¢p. In order to obtain the Lax pair for
the classical Boussinesq equation we have to use a more general expansion function than
X, since x contains information about only one singular manifold.

3. The two-singular manifold method

For the two-singular manifold method [15] we take as expansion variable a function ¥, the
ratio of two functions ¥ and 2 defining two singular manifolds. This function ¥ then
satisfies the most general Riccati system with undetermined coefficients:

Y, = Ro+ RiY + RyY? (10)

Y, = So+ $1¥ + S¥? (11)
the cross-derivative condition of which is

T — (F)x =Xo+ XY + X7 =0 (12)
where

Xo=Roy— Sox+RiSo— RS =0 (13)

Xi=Ri;— 81 +2(R2S — RoS2) =0 (14)

Xo=Ry — S, +RS1 —RiS=0. (15)

More generally we take components (¥, ¥a, ...) satisfying a projective Riccati system.
The system (10), (11) can always be linearized by the canonical transformation
Y = 9 /yr onto the essentially two-component first-order linear system

HEEESIE
V2 /. —R, -iR W2
B RCEN (-
V2 /, —5 -5 1%

but in general cannot be linearized onto a second-order scalar system, because this requires
that either Ry or R, never vanishes. The above matrix spectral problem has of course
the same compatibility conditions {13}, (14), and (135) as the Riccati system in ¥. For
PDEs having two principal families (in the sense of [18]) with opposite principal patts, the
associated Darboux transformation will then in general be of the form

ur=Dlogyn — DPlogya+v (18)

where D is the singular part operator [19] and ur, v are two different solutions of the
PDE. The more general Riccati system (10), (11) is therefore particularly well suited to
the two-manifold situation. Further discussion of the two-manifold method can be found
in [15].
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3.1. Application to the classical Boussinesqg system

The truncation (5) is replaced with
ur=alog¥ +ug. (19)

From the definition of grad(¥Y) we see immediately that the resulting truncation for grad(ur)
extends from Y~ to ¥, and so those for U and V extend from ¥~! to ¥, and from ¥~2
to Y2, respectively. The possibility of constructing such truncations of Painlevé expansions
involving both negative and positive powers was first remarked upon in 120]. It is this
together with the variable ¥, satisfying a more general Riccati system than yx, that allows
here the recovery of the Lax pair and the Darboux transformation for the classical Boussineg
equation.
Substitution of (19) into (2) gives an expansion in ¥ extending from ¥~* to ¥*

Elug] =¥~ Z Ey! = (0)
f=0
generating nine determmmg equations, together with the three cross-derivative conditions
(13)-(15)., Among these, Eq and Eg are identically zero since in (19) the leading-order
coefficient has already been chosen, and E;, Es—; for the Fuchs indices j = 3,4 are
differential consequences of (Ey, Ez), (E7, Eg) respectively. This then leaves us with four
determining equations,

E 2 Rox So
R3_2a ( R, +a R;-l-—-—}—Zugx):O 20

352 So Rﬂx zR%x
=al|2aR —2——12 = — 3 —=
aR? a( TR, uo'x) Ry R

RO.xx
Ra

—4g2 —2a%R; ;

+2ug, + 6up, — 6aup cx + 4%%_1 +11a°R?
o

So So\?
+4a”RoRy + 10a Ry =~ -+ (R—") +28, =0 (22)
0
3E¢ ) Ry 2‘R2x
=g 2R -2 —12 3at—=
aR2 a(a 1 2R2 uo_;) + R2
Rl:.t S2
4g? = — 24%R =
“+4a Ry Lx Ry
2 S2 2pn2
—2ug, — Oug, — 6aUo xx — 4Euo,x —1la"R;
S (S
—4a?RyRy — 10aR— — { =] —2a8 =0 (23)
Ry Ry
Er o 2f Rox 82
R—g=2a (a R, —cu'i[—R—Z«ZuQJt =0 24)
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where ¢-derivatives of Rp and R, have been eliminated using the cross-derivative conditions

{13) and (15).

Assuming RpRy # 0, these four equations are equivalent, modulo the cross-derivative

conditions (13)}—(15), to

S
22 = 2ug, — al(log Ro)x + R)
Ry
5
22 = —2uy , + a((log Ro)x — Ry)
R

Ey, Eg

R_% + E%— = %az(aRl +uox)s =0

E E,

R§ - R—§ = 2a(aRy +ugs) + 0% @Ry + uo ) (@R +uox)s = 0.

2

@3)

(26)

(27)

(28}

This introduces the spectral parameter as an arbitrary constant of integration and leads

to the solution for Ry, Sg, 51, and 5
Ri=A— a"ug_x
So = —a’Ry — aRy,x — RoMox
S| = —ar? = 2aRyR, —a'Iuo‘,.
Sy = ~aiRy+aRy ; — Roug

with the two remaining nonidentically zero cross-derivative conditions

. R \2
a?- = (aaf =+ 8, )(ug + alog Ro) + 24’ Ry Ry + (uo.x +a—£i) =0
] ]

22
Ry
Elimination of Ry or R, leads to the conditions

2

Xo 2 R E{uo -4 log Rz] 0 Xz = 2a2R0

X R 2
a— = (aaf — 3 (ug — alog Ry) ~ 22°RyRs — (uo,x —a ;x) =0.

Elug + é flog Rpl =

(29)
(30
(31)
(32)

(33)

(34)

(35)

expressing that a second solution v to the classical Boussinesq system has been obtained.
Since Ry and R; are exchanged under the permutation of (¢, 1[:2), this provides for the

Riccati pseudopotential ¥y = R, Y
ye=ro+ry+r2y

Ve = 50 + 513 + 5277

the unigue solution

1
=m0 — U§+avxx)

2a2
r =l-—-—vx
a

r2=1

(36)
(37

(38)

(39)

(40)
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1 1
5o = =5 (@ + V) (v + V2) 4 = (Ve + UxVee) — 3A0sx — SVxnx (41)

2a 2a

1
s1=—ah - (43)
with the conservative form for the second equation (37)
I
» = (—(vx +al)y+ 2—a(vz +ui— av;x)) . (44)
X

The transformation y = /Y gives a matrix Lax pair (16), (17), with R; = r; and
§; = 5;. The truncation u¢ gives the corresponding Darboux transformation

ur=alog¥ +up=alogy+v=alogy, —alogya+v (45)

which is exactly of the form (18).

The two-singular manifold method thus gives both the Lax pair and the Darboux
transformation in the case of the Broer—Kaup system. This situation is identical to that
of the (one-)singular manifold method of Weiss when applied to the Korteweg and de Vries
equation [7, 15]: the Darboux transformation is not known before the truncation procedure
and is a result of the method. Thus, in some sense. the Broer—Kaup systern is as elementary
among the two-family equations as the KdV equation is among the one-family ones.

Elimination [11] of y between the Riccati psendopotential (36), (37) and the Darboux
transformation (45) gives the auto-Bécklund transformation for the classical Boussinesq
system [9]

1
(u —v); = ah — v, + %4 _,ze(u—w/a(vr + v — auy) (46)
( — v}, = —a®A% + 02 = aqvy, — ae® V%) + p,)

1
_;__é;e(u—u)/a(al + vy +ad) (v + U_% — QUxy) (47)

where we have written u for ur. (For this particular example, y can be easily eliminated
since the singular part operator D is invertible: y = e~¥)/a )

The Riceati system (36), (37) can also be linearized (because ry is a never-vanishing
constant) onto a scalar Lax pair by

Nx
y= i - (48)
| - 1 = =
ﬂxx=(}\-'—§'5U)nx—4—az'(V+de)7? (49)
1 — Vo2 5, =
M =—a (l']' EU) nx—i—a(lak +V+aUin (50)
the spatial part of which is linear in A and the physical fields U, ¥ linked to v by
U =2u, V= -2y —2v3. (51

In (50) the arbitrary gauge coming from the integration with respect to x in (44} has been
set equal to the constant gaA?/2. The cross-derivative condition of the pair (49), (50) then
reads

-1

1 I - = —
sy = M)e = =5 BT, Vs = o (BT, V)42 (BT, V) Jn=0 (D)
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and so is satisfied iff I7, V satisfy the classical Boussinesq system (1).
If one linearizes the Riccati systern (36}, (37) so as to cancel the coefficient of 77, in
the spatial part (49). one obtains

. S
y==7 - 4a(U 2a)) (53)
1 .
Ve = 1o [(T —2a0)* —4V]y (54)
v =—3 (U +2ad) v, + 30,y (55)

This is the Lax pair for the classical Boussinesq equation given by Kaup [2]; the nonlinearity
in A and U of the spatial part (54) of this Lax pair is due to the shift incorporated in (53)
which removes terms in ¥, from (54).

3.2. Remarks

There has recently been another atternpt [21] to obtain the Lax pair for the classical
Boussinesq equation from its Painlevé analysis. Using arguments based on the Hirota
bilinear form of the classical Boussinesq equation [6], a solution was sought depending
explicitly on two singular manifolds. However, these authors were not able to obtain the
Lax pair with a spectral parameter A —the latter had to be introduced afterwards using
the Galilean invariance of the classical Boussinesq system. Moreover, the manipulation of
expansions involving tweo {(or more) singular manifolds is complicated, and was not handled
systematically in [21].
We stress therefore the following advantages of the approach adopted herein:
We use a single expansion variable Y.
After substitution of the appropriate expansion, coefficients of each power of ¥ are set
to zero independently.
e The spectral parameter A is introduced by the process of solving the determining
equations for the coefficients of the appropriate (projective) Riccati system.
o The singularity structure dictates the required linearization of the Riccati system.

These points are of course equally applicable to both the singular manifold method of
Weiss [12,22] and to the two-singular manifold method used here.

Finally, we remark that the idea of introducing two entire functions, originally due
to Painlevé [23] for ordinary differential equations, wag first introduced for PDEs by
Hirota [24,25]. The bilinear and trilinear approaches for the classical Boussinesq system,
and its occurence as a reduction of first modified KP, are discussed in [26-29].

4, Conclusions

‘We have applied the two-singular manifold method to the classical Boussinesq equation to
derive its Lax pair and Darboux transformation from Painlevé analysis. The auto-Bécklund
transformation then follows immediately, by elimination of the variable y between the two
Riccati pseudopotential equations and the Darboux transformation.
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Appendix. The invariant analysis

The invariant analysis [16] uses as expansion variable a function x given in terms of the
singuiar manifold ¢ — ¢y by

-1
Oz Prx )
=|—— - (AD)
* (co — 0 20
and also the x-primitive of x !, log ¥ [17], where
= (¢ — poye; . (A2)
These functions have gradients given by
I
xx =1+ -z-sxz (A3)
xe = —C+ Cex — 2(Cox + CHX® (A4)
(log W)y = %~ (AS)
(log ¥), = —=Cx ™ + 4C; a6
where
2
5=(‘”£) —g(@) c=-2 : (A7)
Px x Px Px
The cross-derivative condition on grad(y) is identical to that on grad(log \¥);
S+ Coxx +2C:S+ €S, =0 (A8)

and is identically satisfied in terms of ¢.
This invariant analysis builds in a re-summation of the original WTC Painlevé expansion,
and has the effect of greatly shortening the expressions for the coefficients of the expansion.
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